
Communications in Transportation Research 5 (2025) 100181
Contents lists available at ScienceDirect

Communications in Transportation Research

journal homepage: www.journals.elsevier.com/communications-in-transportation-research
Full Length Article
Traffic simulation optimization considering driving styles

Yunyang Shi a, Tong Wu b, Tan Guo c, Jinbiao Huo d, Ziyuan Gu a,*, Yifan Dai e, Zhiyuan Liu a,**

a School of Transportation, Southeast University, Nanjing, 210096, China
b Department of Civil Engineering, Monash University, Victoria, 3800, Australia
c Zhejiang Expressway Information Engineering and Technology Co., Ltd., Hangzhou, 310000, China
d Civil & Environmental Engineering Department, University of Wisconsin–Madison, Madison, WI, 53706, USA
e Suzhou Automotive Research Institute of Tsinghua University (Wujiang), Suzhou, 215200, China
A R T I C L E I N F O

Keywords:
Expected speed
parameter calibration
Bayesian optimization
Microscopic traffic simulation
Driving style
* Corresponding author.
** Corresponding author.

E-mail addresses: ziyuangu@seu.edu.cn (Z. Gu),

https://doi.org/10.1016/j.commtr.2025.100181
Received 11 September 2024; Received in revised
Available online xxxx
2772-4247/© 2025 The Authors. Published by Els
(http://creativecommons.org/licenses/by-nc-nd/4.0
A B S T R A C T

Parameter calibration is essential for ensuring the accuracy of microscopic traffic simulations. The expected speed
is a critical parameter that characterizes behaviors of vehicles in most simulation models, which is influenced by
road traffic conditions and the driving characteristics of different drivers. Most existing parameter calibration
methods typically concentrate on micro-level parameters such as time headway and lane change motivation,
while overlooking the calibration of vehicle expected speeds in consideration of driver behavior habits. This study
combines data from highway electronic toll collection (ETC), gantries, and 100-m mileage average speed data,
and proposes a method for calibrating vehicle expected speed that considers driving style clustering. The Gaussian
mixture model (GMM) algorithm is used to develop driver models with three distinct driving styles: aggressive,
moderate, and conservative. To ensure driving diversity and enhance parameter calibration efficiency, we rebuild
vehicle driving models and representative parameters based on the classification results. Moreover, the Bayesian
optimization algorithm is modified in conjunction with a microscopic traffic simulation model to perform
automatic calibration of expected speeds. Experiments conducted on the Shanghai–Hangzhou–Ningbo highway
demonstrate that the proposed method significantly reduces the mean absolute percentage error (MAPE) from
20.2% (using default parameters) to 3.1%. Additionally, in the model robustness test, the MAPE reaches 5.01%,
indicating a certain level of stability and scalability. This method proposes a tailored calibration method ac-
counting for the heterogeneous driving behaviors of micro-traffic simulation models, achieving satisfactory
calibration results for simulation models in highway scenarios.
1. Introduction

The microscopic traffic simulation model, which uses computer pro-
grams to simulate the interactions and operations of elements within
transportation systems, is an indispensable tool for analyzing and eval-
uating complex traffic systems. It has been widely recognized that the
accuracy and effectiveness of microscopic traffic simulation models are
significantly affected by parameters within the model (Shi et al., 2022).
The parameters refer to the variables or inputs that characterize the
operational, behavioral, and environmental aspects of the simulated
traffic system. These parameters are crucial for defining how the traffic
simulation behaves and interacts with real-world conditions and for
ensuring accurate modeling of traffic flow, driver behavior, and system
performance (Xu and Zheng, 2024). Recently, traffic systems are
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becoming increasingly complex, necessitating the use of microscopic
traffic simulation models to support the analysis, operation, and man-
agement of transportation systems (Gu et al., 2023; Liu et al., 2023;
Thonhofer et al., 2018). Despite these advancements, existing micro-
scopic traffic simulation practical engineering prefers to apply default
recommended parameters. This practice can result in simulation distor-
tions and unreliable outcomes, particularly in traffic scenarios charac-
terized by complex road conditions and diverse driving behaviors
(Marina Martinez et al., 2018). Therefore, to advance transportation
practice, it is essential to efficiently determine the value of parameters,
generating accurate simulation outputs. The problem of increasing the
accuracy of simulation models by determining the optimal values of
parameters is referred to as parameter calibration problems in Chiappone
et al. (2016).
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The parameter calibration for microscopic traffic simulation is
inherently intricate and time-intensive. Due to the large number of pa-
rameters involved in microscopic traffic simulation, it is impractical to
calibrate all of them simultaneously. Existing studies typically develop
calibration methodologies for specific parameters, tailored to specific
objectives or simulation scenarios. This study specifically focuses on
simulation on highway scenarios. Compared to urban networks, high-
ways equipped with better closure and data acquisition conditions,
providing a solid foundation for high-precision simulations. Whereas,
these data sources have not been fully used to enhance the accuracy of
simulation models, and the simulation on freeways, when default pa-
rameters are used, usually generate unacceptable errors. In simulation,
when two vehicles start at the same time and are detected simulta-
neously, real-world vehicles lag significantly behind their simulated
counterparts when observed at a later point in time. This discrepancy
becomes more pronounced as the vehicles cover more distance.

Existing parameter calibration for highway simulation usually focuses
on parameters that describe driving behaviors, such as car following and
lane changing. While these parameters are important, the expected
vehicle speed, the maximum safe speed a driver aims to achieve with
minimal or no impediment from other vehicles, remains largely unex-
plored. Huo et al. (2023) and practical applications typically use a uni-
form random distribution or the average travel speed derived from the
electronic toll collection (ETC) data as the vehicle's expected speed.
These methods are inherently flawed and lead to inaccurate simulations.

The expected speed varies with driver behavior characteristics. For
instance, aggressive drivers reach their destinations more expeditiously
than conservative drivers under optimal traffic conditions. Recently, with
the extensive coverage of ETC on highways, the expected speed can be
calibrated with greater precision by capturing detailed origin-
–destination (OD) information and accounting for diverse driving styles.
Establishing a plausible expected speed for individual vehicles can
significantly enhance the representation of driver heterogeneity, thereby
improving the overall accuracy of the simulation.

The primary objective of this study is to develop a calibration method
for the expected speeds within simulation on freeway scenarios. This will
be accomplished by using single-vehicle data obtained from real highway
ETC toll stations and 100-mmileage speed data from AutoNavi Company,
combined with an efficient parameter calibration method. Different
drivers' behavioral characteristics and styles are extracted using clus-
tering algorithms, followed by calibration through an automatic
parameter calibration algorithm that incorporates key parameters in
microscopic traffic simulation. This continuous iterative process involves
searching for an optimal set of input parameters to minimize the error
between simulated and observed traffic measurements. Finally, the
proposed method is verified using real data from Zhejiang highways in
China. Developing a set of parameter calibration methods that account
for different driving styles in real-world scenarios is also crucial for
researching emerging technologies. This includes hybrid traffic flows
composed of human drivers and intelligent networked vehicles. In a
hybrid driving environment, accurately simulating human behavior for
autonomous vehicles can lead to more consistent driving behavior on the
road, thereby enhancing driving safety and reducing accidents.

In summary, the main contributions of this study are as follows.

1) A driving style recognition method based on GMM clustering is pro-
posed, utilizing ETC data for typical highway scenes. Driving styles
are classified into three categories: aggressive, moderate, and con-
servative, to reflect the behavior of different drivers under favorable
traffic conditions.

2) Based on the driving style recognition method, a Bayesian optimiza-
tion (BO) method for calibrating expected speeds is proposed.

3) Experiments based on real road networks show that the proposed
method significantly reduces errors and demonstrates high univer-
sality and expansibility compared to traditional methods under non-
congestion conditions.
2

The rest of this paper is organized as follows. Section 2 reviews pre-
vious studies related to driving style recognition and simulation param-
eter calibration. Section 3 introduces methods and details of GMM
clustering and BO algorithm. Section 4 describes the specific experiments
and results, including the processing of real data, the preparation and
setting of microscopic traffic simulation, the testing of GMM clustering,
and BO parameter calibration. Finally, the conclusions are drawn in
Section 5.

2. Related works

2.1. Driving style recognition

Driving style encapsulates the synthesis of driving behaviors and habits
influenced by various physiological factors such as individual driving
tendencies, personality traits, age, fatigue levels, as well as external factors
including traffic conditions and road characteristics (Li et al., 2017).
Drivers exhibiting diverse driving styles demonstrate markedly distinct
characteristics in their driving operational behaviors throughout the
driving process (He et al., 2023). Consequently, drivers with varying styles
can make distinct driving decisions when encountering the same traffic
environment. Given that driving style information is not directly observ-
able, quantitative analysis of different driving styles has emerged as a topic
warranting thorough investigation. Researchers have undertaken exten-
sive efforts from various perspectives to address this challenge.

Driving style is commonly categorized into two distinct types: short-
term and long-term (Chu et al., 2023), both of which could be affected by
the driver's habits, personality, and driving technical proficiency.
Long-term driving style tends to be stable and may change gradually as
driving proficiency improves. For instance, bus drivers often exhibit
consistent driving behaviors when navigating the same route. Passengers'
experiences riding a bus driven by the same driver are relatively uniform,
reflecting consistent characteristics such as average acceleration, decel-
eration, and the frequency of lane changes along that route. According to
Vaitkus et al. (2014), the long-term driving style of bus drivers with
relatively consistent driving duties can be classified into two categories:
normal driving style and aggressive driving style. Short-term driving
style describes how drivers complete specific driving tasks over a short
period. It is often influenced by the immediate driving task and scenario.
Microscopic-level driving data is commonly employed in driving style
recognition research. For instance, parameters such as brake pedal
displacement, acceleration pedal position, and steering wheel angular
speed provide direct insights into a driver's driving behavior, thus facil-
itating the recognition of driving tasks and the driver's short-term driving
style, as noted in Khodairy and Abosamra (2021), which is more suitable
for the recognition of a driving task and the recognition of the driver's
short-term driving style.

For driving style recognition, existing approaches can be categorized
into rule-based and machine learning methods, in which machine
learning methods include unsupervised, supervised, and semi-supervised
techniques. Table 1 outlines recent research efforts in this area. Different
data conditions result in variations in driving style recognition methods.
In recent years, unsupervised learning has become the mainstream
approach for recognizing driving styles.

2.2. Simulation parameter calibration

The calibration of traffic simulation model parameters generally en-
compasses two essential steps. First, empirical data from real-world
scenarios are utilized to validate various parameters within the simula-
tion process, including road network attributes, simulation process pa-
rameters, and the optimal combination of simulation model parameters.
Second, the disparity between the simulation outputs and real-world
observations is rigorously evaluated and verified. This two-step process
ensures that the simulationmodel is accurate and representative of actual
traffic conditions (Gu et al., 2024).



Table 1
Summary of driving style recognition methods.

Category Algorithm Driving style Data Ref.

Rule-based Fuzzy logic Below normal, normal, aggressive, very
aggressive

Vehicle GPS trajectory data Aljaafreh et al.
(2012)

Fuzzy-rule Aggressive, anxious, keen, sedate,
economical

Driving simulator B€ar et al. (2011)

Fuzzy Inference System Comfortable, normal, sporty Data available on the CAN bus D€orr et al. (2014)
Interval type-2 fuzzy inference system Calm, moderate, aggressive Argoverse (public dataset) Gomes and Wolf

(2021)
Unsupervised
learning

K-means Five different probability combinations of
driving states

Large-scale ride-hailing
GPS data

Li et al. (2023)

K-means Three driving styles Data extracted from unmanned
aerial vehicle

Li et al. (2024)

K-means Positive, relatively positive, relatively
cautious, cautious

Data extracted from unmanned
aerial vehicle

Wen et al. (2022)

Modified latent Dirichlet allocation Three different aggressive levels CDBD (Chinese driving behavior
database)

Qi et al. (2016)

Kernel fuzzy C-Means model, latent
dirichlet allocation

— CDBD (Chinese driving behavior
database)

Qi et al. (2019)

Supervised learning Labeled latent dirichlet allocation Aggressive, moderate, careful SPMD (safety pilot model
deployment) data

(Chen et al., 2021b)

SVM, AdaBoost, random forest — Vehicle on-board diagnostic (OBD)
data

Kumar and Jain
(2023)

Semi-supervised
learning

Graph-CNNs Calm, moderate, aggressive Vehicle GPS trajectory data Chen et al. (2021a)
SVM, multiple decision tree Safety, moderation, risk Driving simulator Ma et al. (2019)
Semi-supervised support vector machine Aggressive and normal Driving simulator Wang et al. (2017)
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The parameter calibration of traffic simulation is typically formulated
as an optimization problem. The decision variables are the parameters of
the traffic simulation model, and the objective function is defined as the
discrepancy between actual data and simulation results (Wei et al.,
2022). However, the multitude of model parameters in traffic simu-
lation—including those related to roads, vehicles, and the simulation
environment—interact with one another, thereby complicating the cali-
bration process. To tackle this issue, extensive studies have been con-
ducted to develop optimization methods for solving the parameter
calibration problem. Meta-heuristic algorithms, such as genetic algo-
rithm and simulation degradation, can find optimal solutions under
nonlinear conditions (Bai et al., 2023; Yu and Qu, 2022). Henclewood
et al. (2017) proposed a method based on Monte Carlo to generate
candidate parameter sets for parameter calibration of microscopic-traffic
simulation. Dai et al. (2022) combined vehicle trajectory data to calibrate
human driving behavior based on associated Kalman filter. However,
Microscopic-traffic simulation usually has a large number of parameters
and strong randomness, which leads to the exponential increase of the
solving time of a class of algorithms represented by heuristics with the
increase of the number of parameters, which cannot be processed in a
reasonable time. Therefore, such methods are usually only used to solve
simulation parameter calibration problems in lower dimensions.

Gradient-based methods have also been applied to parameter cali-
bration problems, and one representative algorithm is the simultaneous
perturbation stochastic approximation (SPSA). Antoniou et al. (2016)
proposed an improved W-SPSA method to introduce spatio-temporal
correlations between parameters and measured values, thereby
reducing the impact of noise from unrelated parameters on convergence.
Qurashi et al. (2020) proposed the PC-SPSA method, which reduces the
size and complexity of the problem through dimensionality reduction,
and improves the solving efficiency of SPSA. Ho et al. (2023) combined
the gradient of SPSA with the gradient of the differentiable meta-model
function, which further improved the calibration efficiency compared
with M-SPSA and SPSA algorithms. Sha et al. (2023) proposed a simu-
lation parameter calibration framework combining traffic collision
technology with multi-objective stochastic optimization technology.
Seventeen key parameters were calibrated using SPSA algorithm and
compared with vehicle trajectory extraction. These methods have satis-
factory convergence speed, but they are easy to fall into local optimiza-
tion. Moreover, the computational cost of SPSA methods can be
expensive because in each iteration, three simulation evaluations are
3

required to approximate the gradient information.
In recent years, surrogate model methods have gained prominence

among researchers for addressing parameter calibration problems. These
models construct an approximation of the complex objective function
based on a limited set of model inputs and outputs. By optimizing this
approximation function, surrogate models enhance the efficiency of the
solution process, significantly improving the calibration accuracy and
computational rate. For example, BO (Huo et al., 2023) and
Kriging-based methods (Jung et al., 2022) have been applied to param-
eter calibration to approximate the simulation process and improve the
efficiency of large-scale simulation sampling. Sha et al. (2020) proposed
a microscopic-traffic simulation parameter calibration framework based
on BO, and compared with the SPSA method. Results showed higher
computational efficiency and better convergence, and was robust to the
noise of the target equation. Patwary et al. (2021) developed a
metamodel-based simulation optimization framework, taking account of
the derivatives of link flows with respect to the calibration. This study
attempts to develop parameter calibration method following the princi-
ple of surrogate-based optimization.

On the other hand, some researchers investigated the calibration of
expected speeds in micro-traffic simulation. Zhang et al. (2016) created a
simplified calibration method called the “five-point method” to calibrate
the expected speed distribution by using travel speed, but ignore the
heterogeneity of multiple driving styles and their behaviors. As a result,
the ratio k between travel speed and expected speed of the same vehicle is
fixed, ignoring the influence of different driving styles on different types
of vehicles. On this basis, Maheshwary et al. (2020) used Latin Hyper-
cube design to identify the sensitive parameters affecting driver behavior
for each vehicle type, took the specific driving time of the vehicle class as
the performance measurement standard, and adopted an optimization
method based on genetic algorithm. The optimal parameter sets for
different vehicle classes are obtained. Li et al. (2014) proposed the
Driving Behavior Questionnaire (DBQ) to collect information about
driving attitudes and behaviors and their possible impact on safety and
traffic performance. They analyzed the driving behavior of 30 drivers in
Changsha, China, through questionnaires and on-board tests, divided
them into four driving types, and calibrated a micro-simulation model to
reflect the expected speed and acceleration characteristics of these
driving types (Li et al., 2015). However, limited by the amount of data
and the subjectivity of the questionnaire, the representativeness and
universality of the research results may be affected. By using 14 driving
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parameters and the driver's age, gender, driving experience, annual
mileage, and other attribute data, Chen and Chen (2019) identified three
types of driving styles through cluster analysis and principal component
analysis, and verified the influence of driver attributes on the classifi-
cation of driving styles, but there was no further discussion on simulation
speed calibration. Existing studies generally overlook the diversity of
driving behaviors, failing to adequately consider the heterogeneity of
multiple driving styles and their associated behaviors and preventing
them from fully capturing the actual driving behaviors. To address these
issues, this study employs the GMM clustering method to identify driver
styles and calibrates the expected speed of vehicles through BO. This
approach comprehensively considers the diversity of driving behaviors,
thereby enhancing the accuracy of the simulation.

3. Methodology

Utilizing representative indicators and categorizing them through
unsupervised learning is an effective approach to classify and explore the
relationships among various driving styles. This section employs travel
time and speed for GMM clustering to classify driver styles into three
categories. Subsequently, BO is applied in combination with micro-
simulation. Combing the clustering and the calibration, a parameter
calibration method, the BOG, is developed. The following sections will
introduce the theoretical principles and methodology behind GMM
clustering and BO. The overall framework of this article is shown in
Fig. 1.

3.1. Gaussian mixture model clustering method

GMM constitutes a statistical framework that encapsulates the prob-
ability density function of a dataset through the amalgamation of mul-
tiple Gaussian distributions, and each characterized by its respective
weight. This modeling approach finds particular utility in datasets
exhibiting potential heterogeneity, wherein the distribution of data
within distinct subgroups can be effectively approximated by Gaussian
distributions. In contrast to conventional hard clustering methodologies,
GMM introduces a soft clustering mechanism, allowing for nuanced
assignment of data points to multiple clusters with varying degrees of
certainty. The underlying assumption of GMM posits that the dataset
Fig. 1. BOG simulation parame
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originates from a composite of multiple Gaussian distributions. Each
Gaussian distribution, termed a “component”, is parameterized by three
essential attributes: mean μk, covariance matrix Σk, and weight πk. These
parameters collectively define the distribution of a given data point x
across each component, whose probability density function (PDF) can be
expressed as

pðxjμk;ΣkÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞdjΣkj

q exp
�
� 1
2
ðx� μkÞTΣ�1

k ðx� μkÞ
�

(1)

where d is the characteristic dimension of the data and∣ Σk ∣is the
determinant of the covariance matrix.

The probability density function of the k-th Gaussian distribution is
defined by its mean μk and the covariance matrix Σk, and each Gaussian
distribution has a weight πk associated with it. Thus, for a given data
point x, the probability that it belongs to the k-th Gaussian distribution
can be calculated using the probability density function of the Gaussian
distribution. The probability distribution over the entire dataset is the
weighted sum of these Gaussian distributions, expressed as

pðxjΛÞ¼
XK
k¼1

πkpðxjμk;ΣkÞ (2)

where Λ represents the set of all parameters of the model, including the
mean, covariance matrix, and weights of all Gaussian distributions.

GMM clustering algorithm usually uses expectation maximization
(EM) algorithm to estimate model parameters. The EM algorithm is an
iterative method that consists of two main steps: the expectation step (E-
step) and the maximization step (M-step). In E-step, the algorithm cal-
culates the posterior probability of each data point belonging to each
Gaussian distribution under the current model parameters, expressed as

rik ¼ pðzi ¼ kjxi;ΛÞ¼ πkpðxijμk;ΣkÞ
pðxijΛÞ (3)

Then, in the M-step, the algorithm uses these posterior probabilities
to update the model parameters, including the weights, means, and
covariance matrices for each Gaussian distribution. Specifically,

Update of weight πk:
ter calibration framework.
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πk ¼ 1 XN
rik (4)
N i¼1

Update of mean μk:

μk ¼
PN
i¼1

rikxi

PN
i¼1

rik

(5)

Update of covariance matrix Σk:

Σk ¼
PN
i¼1

rikðxi � μkÞðxi � μkÞT

PN
i¼1

rik

(6)

The update of weight πk reflects the evaluation of the fitting degree of
the entire dataset by the k-th Gaussian distribution of the current model.
The update of the mean μk based on the difference between the data
points and the currently estimated Gaussian distribution, while the up-
date of the covariance matrix Σk takes into account the difference be-
tween the data points and their relationship to the current Gaussian
distribution.

The iterative process of the GMM clustering algorithm continues until
the change in model parameters falls below a preset threshold or a pre-
determined number of iterations is reached. At the conclusion of the
algorithm, each data point is assigned a set of posterior probabilities
indicating the degree to which it belongs to each Gaussian distribution.
These posterior probabilities can be utilized for further analysis, such as
determining the cluster membership of data points or assessing cluster
uncertainty. A detailed description of the algorithm can be found in Al-
gorithm 1.

Algorithm 1. Gaussian mixture model for driving style recognition
1 Input: D: dataset, K: number of Gaussian components, Epsilon: convergence
threshold,

2
 MaxIterations: maximum number of iterations

3
 Output: Cluster labels for each data point in D

4

5
 Step 1: Initialization

6
 Randomly initialize the mean μk for each Gaussian component k ¼ 1–K

7
 Set the covariance matrices Σk to the identity matrix for each k

8
 Equally distribute the weights πk for each component

9
 Step 2: EM algorithm iteration

10
 For iteration ¼ 1 to MaxIterations do

11
 E-step:

12
 For each data point i in D do

13
 Compute the posterior probabilities rik for each component k based on

the current parameters
14
15
 M-step:

16
 Update the parameters (weights πk means μk, and covariances Σk) based on

the posterior probabilities rik
17
18
 Convergence Check:

19
 If the change in parameters is less than Epsilon, exit the loop

20
 If the algorithm reaches MaxIterations without converging, issue a warning

21
 Return the final cluster labels

22
 End
GMM, as a statistical model founded upon probabilistic clustering
principles, is distinguished by its mean vector and covariance matrix. In
driver behavior data analysis and classification, GMM's adaptable and
probabilistic nature makes it well-suited for capturing the distributional
characteristics of data. This results in nuanced representation of different
driving styles. Unlike rigid categorical allocation, GMM probabilistically
assigns each data point to multiple clusters. This flexibility is crucial for
accommodating the complex patterns and transitional states inherent in
driving behavior data, allowing for a more accurate and detailed analysis
of various driving styles.

Furthermore, using statistical metrics such as the bayesian informa-
tion criterion (BIC), GMM autonomously determines the optimal cluster
5

count, thereby mitigating the influence of subjective biases. Conse-
quently, this study advocates for the adoption of GMM as the benchmark
clustering algorithm for driving style recognition.

3.2. Bayesian optimization method for parameter calibration

This section introduces a parameter calibration method based on the
BO algorithm. BO is widely recognized to be an efficient method for
solving parameter calibration problems. The basic idea of BO is con-
structing a surrogate model (an analytical function that defines the dis-
tribution over the underlying objective function) from data acquired by
evaluating the objective function at a few points (termed sampled
points). The surrogate model is then used to estimate the location of the
optimum, and suggest new sample points for model refinement. The ef-
ficiency of BO stems from its capability of incorporating prior beliefs of
the problem to inform the sampling of points. The parameter calibration
model is first established in Section 3.2.1. Then, the BO algorithm is
introduced in Section 3.2.2.

3.2.1. Parameter calibration model
Consider the parameter calibration problem as

min
θ
f ðθ; p;DÞ (7)

subject to

θl � θ � θu (8)

where f ð ⋅Þmeasures the difference between simulation outputs and field
measurements; θ is the decision vector, i.e., the simulation parameters to
be tuned; p captures the exogenous variables (e.g., network topology) of
the simulation model;D defines the field measurements (e.g., densities or
travel speeds); θl (θu) defines the lower (upper) bounds of θ.

The objective of the optimization problem is to minimize the differ-
ence between simulation outputs and field measurements. Let us first
illustrate the intricacy of f ðθ; p;DÞ (hereafter denoted as f ðθÞ). Traffic
simulators intricately embed detailed descriptions of complex travel
behaviors. Specifically, they meticulously define car-following behav-
iors, lane-changing behaviors, and actions at ramp-merging segments for
each vehicle, taking into account the surrounding traffic conditions. As
results, f ðθÞ is non-convex and non-differentiable. The primary challenge
of solving the parameter calibration problem lies in the fact that the
objective function is highly nonlinear and without closed form expres-
sions or derivatives with respect to the parameter θ. Thus, identifying
satisfactory solutions that minimize the intricate objective function is a
challengeable task.

3.2.2. Bayesian optimization method
BO is a sequential design technique for the global optimization of

black-box functions (Jasper, 2012). It involves two iterative steps: (1)
constructing surrogate models based on samples and (2) sampling new
points to refine these surrogate models. The first step uses Gaussian
processes regression (GPR) to define the prior and posterior distributions
over the objective function. The second step involves optimizing acqui-
sition functions to balance exploration and exploitation when searching
for new samples.

BO algorithms use GPR model to construct the surrogate model for
the objective function f ð ⋅Þ. Specifically, GPR assumes that f ð ⋅Þ is a
sample path of a Gaussian process fGP, which has two main components,
the mean function μðθÞ and the covariance function kðθ;θ0 Þ. A GP prior is
first assigned to the complicated function f ð ⋅Þ:

fGPðθÞ � Nðμ0ðθÞ; k0ðθ; θ
0 ÞÞ (9)

The prior distribution reflects the prior beliefs of the function f ð ⋅Þ,
which can be chosen by the users. Typically, the mean function is set to a
constant, μ0ðθÞ ¼ 0, and the covariance function is set as the radial bias



Table 3
Detailed description of ETC data.

Name Description Type

Vehicleplate License plate number Text
OriginEdge Starting point (vehicle entering the section) Text
DestinationEdge End point (when the vehicle enters the section) Text
StartTime Starting time (when the vehicle enters the section) Datetime
EndTime End time (when the vehicle enters the section) Datetime
VehicleClass Vehicle class Text
RoadID Road ID Text
Direction Driving direction Text
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function, k0ðθ; θ0 Þ ¼ expð� kθ� θ
0 k2 =2l2Þ, where k ⋅k is the Euclidean

norm and l is a hyperparameter of the function. The prior distribution is
then updated based on measurements of the objective function. Let Xn ¼
fθ1;…; θng denote n sample points, of which the associated objective
function values are denoted by Yn ¼ ðf1;…; fnÞ. Given the observation
dataset fXn;Yng, the Gaussian process can be updated accordingly.

fGPðθÞjfXn;Yng � NðμnðθÞ; knðθ; θ
0 Þ Þ (10)

specifically,

μnðθÞ ¼ μ0ðθÞ þ k0ðθ;XnÞk0ðXn;XnÞ�1ðYn � μ0ðXÞ Þ
and

knðθ; θ0 Þ ¼ k0ðθ; θ0 Þ � k0ðθ;XnÞk0ðXn;XnÞ�1k0ðXn; θ
0 Þ

where k0ðθ;XnÞ ¼ ðk0ðθ; θ1Þ;…; k0ðθ; θnÞÞT 2 R1�n, k0ðXn;θÞ ¼ ðk0ðθ;θ1Þ;
…; k0ðθ; θnÞÞ 2 Rnk0ðXn; XnÞ ¼ ½k0ðθi; θjÞ�1�i;j�n 2 Rn�n, and μ0ðXnÞ ¼
ðμ0ðθ1Þ;…; μ0ðθnÞÞ 2 Rn. Given θ, μnðθÞ can be interpreted as the condi-
tional estimation of f ðθÞ, and knðθ; θÞ measures the uncertainty of the
estimation.

Acquisition functions, derived from GPRmodels, propose new sample
points that potentially enhance the estimation of the objective function.
These functions are typically designed to balance exploration and
exploitation in the search process. Numerous efficient acquisition func-
tions have been developed and have shown promising results, including
the expected improvement (EI) function, the Gaussian process upper
confidence bound (GP-UCB) function, and the knowledge gradient (KG)
function, among others. In this study, the EI function is adopted.

Let f * ¼minff1;…;fng. The basic idea of EI is to sample a new solution
θnþ1 to maximize the expected improvement over the current best sample
that is

max
θ

E⟦maxðf * � f ðθÞ; 0Þ⟧ (11)

Given the posterior distribution fGPðθÞjfXn; Yng, the optimization
problem (11) is equivalent to the following problem:

max
θ

ðf * � μnðθÞÞΦ
 
f * � μnðθÞ
k1=2n ðθ; θÞ

!
þ k1=2n ðθ; θÞϕ

 
f * � μnðθÞ
k1=2n ðθ; θÞ

!
(12)

where Φð ⋅Þ and ϕð ⋅Þ are the cumulative distribution function (CDF) and
probability density function (PDF) of the standard normal distribution,
respectively. By iteratively formulating the GPR model and optimizing
the EI function, BO algorithms successively approximating the original
objective function, and finally optimize the problem through surrogate
models. Details of the algorithm are summarized in Algorithm 2.

Algorithm 2. Bayesian optimization for parameter calibration
Input: observation data and the calibration problem.
Initialization: Randomly sample n feasible parameters Xn ¼ fθ1;…;θng. Conduct

simulation under each parameter xi , and obtain the associated objective function f ;
i ¼ 1;…;n. Construct GPR surrogate model based on the observation dataset fXn;

Yng.
While the stopping criterion of sampling has not been met do:
Solve the EI function and obtain a new sample point θnþ1.
Conduct simulation and obtain, fnþ1 ¼ f ðθnþ1Þ. Update Xn ¼ Xn[ fθnþ1g, Yn ¼ Yn[
ffnþ1g, n ¼ nþ 1.
Update the GP surrogate model based on Xn and Yn.

End While
Solve the optimization problem θopt ¼ argmin

x
ðμnðθÞÞ.

Return θopt.

The following conditions can be set as stopping criteria of sampling in
Algorithm 2: (1) the sampling reaches computational budgets, (2) the
minimal objective function value of samples reaches a predetermined
value, and (3) the best-found solution remains unchanged for multiple
iterations.
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4. Experiment and results

4.1. Data processing

Compared to urban roads, highways offer a more controlled envi-
ronment where drivers can focus primarily on their driving behaviors,
thereby mitigating distractions from pedestrians, non-motor vehicles,
and complex route selections typical of urban settings. Consequently,
highways serve as a more suitable research domain for capturing drivers'
distinctive driving style characteristics. Recent advancements in data
acquisition equipment have led to the wider coverage, enhanced quality,
and richer multi-source data available on highways. In this study, the
Hangzhou–Ningbo highway in Zhejiang Province, China is chosen as the
research area, leveraging ETC data, gantry passing data, and 100-m
mileage data sourced from the AutoNavi map (which records the
average speed of vehicles over a specified 100-m interval). The selected
data milepost numbers for this study fall within the research area span-
ning from K188 to K215. Further details on the mapping and related data
sources will be discussed in Section 4.3 and Fig. 5.

ETC data, collected through gantries (gate frames) and stations (toll
stations), comprise a comprehensive set of eight valid fields, as delin-
eated in Table 3. Such datasets provide valuable insights into the OD
information of vehicles. Additionally, the travel time of vehicles can be
inferred from regional toll station data. These metrics serve as essential
parameters for evaluating driving styles, contributing significantly to the
comprehensive analysis of driver behaviors (Table 4).

Gantry data comprise two main categories of information. Firstly,
they encompass traffic data recorded by individual gantries, detailing the
number of vehicles traversing each specific gantry in a specified time
interval. Subsequently, they include data pertaining to the average
vehicle speed beneath each gantry. Here, “gantryid” is the unique iden-
tifier for each gantry, while “aver” denotes the average vehicle speed per
10-min period in this study.

The 100-m mileage data provided by AutoNavi delineate the spatial
average speed within the detection interval. The data are precisely arti-
culated as the harmonic average speed of all vehicles traversing the
spatial range at a given time, as outlined in Table 5. In addition to the
above data, the remaining supplementary data can be found in the
Electronic Supplementary Material.

4.2. Driving style recognition based on GMM clustering

In the study area, traffic flow exhibits significant fluctuations,
resulting in considerable variance in running speeds across different
segments (Table 6). Erratic traffic conditions significantly impact driving
behaviors, especially during the formation of bottlenecks. In congestion,
drivers' behaviors are constrained, making it difficult to observe indi-
vidualized driving styles. Even if a driver intends to maintain a higher
speed, congested road conditions inevitably suppress the expression of
their typical driving behavior. Conversely, under smooth traffic condi-
tions, drivers can adhere more closely to their preferred speeds, thereby
more accurately reflecting their driving styles. During periods of low
traffic flow, vehicles typically operate at free-flow speeds, reducing the
mutual influence among drivers. Consequently, differences in driving



Table 4
Detailed description of Gantry data.

Name Description Type Unit

Gantryid Gantry or toll station ID Text —

StartTime Starting time Datetime —

Count Number of passes (per 10 min) Integer veh/10 min
Aver Average speed (per 10 min) Float km/h
VrSpeed Velocity variance (per 10 min) Float —

Table 5
Detailed description of 100-m mileage data.

Name Description Type Unit

TimeFlag Collecting time Datetime —

Speed Space average speed Float km/h
StartMileage Starting milepost number Integer km
EndMileage Ending milepost number Integer km
Road Road ID Text —

Direction Driving direction Text —

Table 6
Description of vehicle speed control parameters in SUMO.

Attribute Default Range Description

SpeedFactor 1.0 (0, 1] The vehicle's expected multiplier of the edge
speed limit and desiredMaxSpeed

SpeedDev 0.1 (0, 1] Deviation of SpeedFactor
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styles become less discernible. In such instances, the lack of substantial
interaction and constraints tends to homogenize driving behavior,
making it difficult to distinguish variations in driving styles among
individuals.

To better capture drivers' driving styles and lay the groundwork for
subsequent simulation parameter calibration efforts, this study selects
appropriate data from AutoNavi's 100-m mileage dataset as the bench-
mark for calibration. Specifically, data from September 2023 is chosen,
excluding instances of severe and occasional congestion observed on
certain dates, as depicted in Fig. 2. September 6, 2023, is identified as the
dataset for GMM clustering. During this period, traffic maintained a
moderate flow without experiencing significant congestion, which serves
as a robust basis for further analyses.

To achieve effective clustering of driving styles, it is imperative to
discern and scrutinize the salient features that accurately capture driving
behaviors. Prior research endeavors have explored a spectrum of factors,
Fig. 2. Space–time diagra
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encompassing driver control metrics (e.g., brake pedal and accelerator
pedal displacement, steering wheel angular speed), driver psychology,
electroencephalography (EEG) signals, and meteorological conditions,
among others. It is noteworthy, however, that these features often exhibit
interrelations, potentially engendering redundant information that could
escalate the computational cost of model training and impinge upon its
predictive accuracy.

ETC data provides reliable and easily obtainable measurements of
travel time, which directly reflect the variability in driving behaviors. In
this study's context of non-congested highway scenarios, prioritizing
travel time from vehicle OD data in various ETC datasets is an essential
way to characterize drivers' behavioral tendencies. Moreover, the
reduction in feature dimensionality serves to expedite model training
while enhancing its efficacy.

In order to furnish a comprehensive portrayal of traffic dynamics and
maximize the availability of vehicle velocity data, the dataset primarily
focuses on vehicles with the maximum OD distance, indicating that these
vehicles have traveled between the farthest two gantries within the
network. Meticulous screening procedures are employed to exclude in-
stances of local traffic congestion, thereby ensuring the robustness and
applicability of vehicle expected speed calibration outcomes. Further-
more, cognizant of the inherent disparities among vehicle types, the
analytical framework bifurcates into two distinct categories: small ve-
hicles and large vehicles. The former encompasses passenger cars and
minivans, with strong acceleration and maneuverability characteristics.
Conversely, coaches and trailers belong to the latter category, charac-
terized by slower acceleration profiles and longer braking distances due
to their large size and weight. By embracing these inherent differentia-
tions, the analytical framework aims to identify distinct clusters that
reveal the nuanced driving behaviors among diverse vehicle types.

Figs. 3 and 4 delineate the outcomes of cluster analysis conducted
through GMM, stratifying vehicle driving behavior into three discernible
categories: aggressive, conservative, and normal. A detailed scrutiny of
the travel speed distribution within each cluster, encompassing metrics
such as median, quartile range, and outliers, unveils notable divergences
among driving behaviors. In the context of small vehicles, conspicuous
differentials emerge between each box plot, coupled with a sparse
presence of outliers (notably, a mere six instances of high-speed outliers
within cluster ¼ 1). These findings vividly underscore the palpable dis-
tinctions in speed patterns across varied behavioral categories.
Conversely, within the cohort of large vehicles, discernible disparities
between box plots are pronounced, particularly accentuated by the
substantial gap observed between cluster ¼ 0 and cluster ¼ 2. Such
disparities in speed distribution signify a discernible discontinuity in
driving behavior among large vehicles, indicative of significant
m of speed variation.



Fig. 3. Driving style clustering based on GMM.

Fig. 4. Box plot of driving style clustering based on GMM.

Fig. 5. Preparation for micro traffic simulation in SUMO.
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differentials in selected driving speeds between radical and conventional
drivers. A comprehensive examination of the clustering outcomes un-
derscores the efficacy of the GMM clustering approach, leveraging ETC
travel speed data, in elucidating and characterizing the distinctive
driving behavior styles exhibited by small and large vehicles on highways
under uncongested conditions. Moreover, these findings underscore the
prospective utility of such clustering outputs as inputs for refining
parameter calibration in microscopic traffic simulation endeavors.
4.3. Construction of microscopic traffic simulation

SUMO, a microscopic traffic simulation software, has garnered sig-
nificant attention and adoption among researchers for a myriad of ap-
plications, encompassing model verification, parameter calibration, and
8

co-simulation (Gressai et al., 2021; Gu et al., 2023; Lopez et al., 2018;
Shi et al., 2023). In this study, SUMO is selected as the simulation tool to
verify the proposed methods.

The definition of vehicle speed stands as a pivotal parameter within
microscopic traffic simulation frameworks, wielding significant influence
over simulation outcomes. Within SUMO, vehicle speed is meticulously
modeled through the assignment of distinct SpeedFactor to each vehicle,
a methodology seamlessly extendable to encompass road speed limits.
This approach entails the multiplication of the road speed limit by the
individual speed factor, culminating in the determination of the vehicle's
expected free-flow speed. If the individual SpeedFactor exceeds unity, the
vehicle's speed may surpass the stipulated road speed limit while
adhering to the maximum permissible speed for the respective vehicle
type. Hence, under conditions of unrestricted flow, the maximum
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attainable speed for a vehicle is governed by the minimum value between
the product of the SpeedLimit � SpeedFactor, and the designated Max-
Speed parameter. The SpeedFactor emerges as a pivotal parameter pro-
foundly impacting the anticipated speed profile of vehicles during
simulations conducted under free-flow conditions.

To effectively present the clustering results within the microscopic
traffic simulation, expected speed of vehicles were converted into
SpeedFactors based on the mean and variance derived from the clustering
analysis. The SpeedFactor was determined by dividing the travel speed by
a reference speed. In the simulation, the SpeedFactor is defined as a
truncated normal distribution: SpeedFactor ¼ normc “(mean, deviation,
lowerCutOff, upperCutOff)”. Different vehicle types necessitate distinct
parameter configurations to enhance simulation accuracy. Drawing from
the previously conducted GMM clustering of speed data for two vehicle
categories (small vehicles and large vehicles) across three driving styles,
we obtained the clustering means, variances, and upper and lower limits
for each cluster. These parameters were then utilized to set the Speed-
Factor for different vehicles in the simulation, thereby accurately repre-
senting the performance of drivers of various models and driving styles on
the highway. The probability of each data point belonging to a particular
cluster was iteratively calculated, and the mean, variance, and weight
parameters of each cluster were continuously updated until convergence
was achieved. For the purposes of this study, the reference speed was set at
120 km/h for small vehicles and 100 km/h for large vehicles, reflecting
the respective speed limits for these vehicle types on the highway.

Based on each cluster's mean and bounds, we calculate the Speed-
Factor's mean, upper, and lower bounds to highlight different driving
behaviors. By setting a default deviation of speed, we identify various
ranges by applying the upper and lower bounds. These SpeedFactor
metrics facilitate the identification and detailed description of different
driving behavior patterns, as delineated in Table 7.

The traffic characteristics of small and large vehicles vary greatly. For
small vehicles, the SpeedFactor of aggressive drivers exhibits a large
range of fluctuation, spanning 21.6 km/h, indicating significant varia-
tions in travel speed within this cohort. This variability may suggest a
propensity for rapid acceleration and deceleration, often associated with
aggressive driving styles. Meanwhile, conservative driving is character-
ized by a mean SpeedFactor of 0.62 and a fluctuation range around 15
km/h. This indicates that while these drivers maintain relatively stable
speeds, the range of speed variation remains broad, reflecting cautious
driving with periodic adjustments. For large vehicles, the fluctuating
ranges of driving speeds are small and similar across the three categories
of drivers. This denotes relatively stable travel speeds with a narrow
range of fluctuation, characteristic of a more uniform and cautious
driving style.

The statistical analysis of SpeedFactor parameters, as derived from
the GMM clustering, provides a nuanced understanding of driving be-
haviors across different vehicle types and driver styles. This compre-
hensive approach enhances the fidelity and reliability of microscopic
traffic simulations, allowing for more accurate modeling of real-world
driving dynamics. Such insights are significant for traffic planning, pol-
icy formulation, and the development of targeted interventions to
improve traffic flow and safety.

Following the GMM clustering analysis, we determined the speed
factors for 6 distinct vehicle types, categorized into small and large
Table 7
SpeedFactor parameters of vehicles with different driving styles after GMM
clustering.

Vehicle type Driving characteristics Speed factor

1 (Passenger and van)
Speed limit:120 km/h

Aggressive Normc (0.83, 0.1, 0.79, 0.97)
Moderate Normc (0.76, 0.1, 0.69, 0.79)
Conservative Normc (0.62, 0.1, 0.56, 0.69)

2 (Coach and trailer)
Speed limit:100 km/h

Aggressive Normc (0.89, 0.1, 0.85, 0.93)
Moderate Normc (0.77, 0.1, 0.74, 0.85)
Conservative Normc (0.71, 0.1, 0.68, 0.74)
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vehicles, each exhibiting one of three driving styles: aggressive, moder-
ate, and conservative. To validate the rationality of these clusters, we
configured various vehicle types (Vtypes) in SUMO based on these six
classifications. We then placed four sets of E1 detectors at corresponding
real-world detector positions within the road network to compare the
simulated speeds with actual speed data.

At the start of the simulation, a preheating period is necessary for
vehicles to enter the road network, mirroring real-world conditions
rather than immediately inputting vehicles into an empty network. To
ensure accuracy, we accounted for the preheating and startup time
inherent in the simulation by discarding the initial preheating period. We
selected five intervals, each spanning 10 min, for the comparative anal-
ysis. The actual speed values were compared with the simulated speeds
derived from both the GMM algorithm and the specified method, using
the mean absolute percentage error (MAPE) as the evaluation metric.
MAPE is defined by

MAPE¼ 1
n

Xn
i¼1

����Ai � Si
Ai

���� (13)

where Ai represents the actual value and Si represents the simulation
value. This approach allows us to rigorously assess the performance and
accuracy of the simulated speeds against real-world data, ensuring that
the clustering method and resultant speed factors are both rational and
effective for use in microscopic traffic simulation. This validation step is
crucial for confirming that the model can accurately replicate real-world
driving behaviors and conditions, thereby enhancing the reliability and
applicability of the simulation outcomes. Based on the aforementioned
methodology, we calculate the percentage error between the simulation
speed and real speed using speed data collected from five gantries. Based
on the aforementioned methodology, the MAPE value derived using the
GMM algorithm is 6.5%. This result indicates that the clustering algo-
rithm enhances the simulation accuracy to a significant extent. However,
the presence of residual errors suggests that there is still room for opti-
mization. These errors can be further reduced by integrating advanced
parameter calibration algorithms, which would fine-tune the model pa-
rameters to better align simulated speeds with observed data.

4.4. Parameter calibration based on bayesian optimization

As the calibration source, data from the Ningbo direction on
September 6, 2023, between 9:00 a.m. and 10:00 a.m., were chosen using
the data screening procedure outlined in Section 4.2. Firstly, two sets of
experiments are performed, including using BO directly and integrating
BO with GMM. Two experiments were both configured to run for 30 it-
erations. Fig. 6 illustrates the error convergence curve as a function of the
number of iterations.

Fig. 6a illustrates that the model converges rapidly and reaches an
optimal value. The MAPE value derived using BO without GMM algo-
rithm is 7.2%. Compared with the 6.5% error obtained when using only
the GMM algorithm, as mentioned in Section 4.3, it is evident that the BO
algorithm faces challenges in directly capturing the intrinsic relation-
ships of driving characteristics among different drivers to identify opti-
mized parameters. The integration of GMM and BO holds promise for
addressing these issues.

Moreover, Fig. 6b shows that the method rapidly identified satisfactory
parameters during the initial sample collection phase but subsequently
encountered a local optimal solution. After 27 iterations, the algorithm
discovered a new set of parameters with superior performance, reducing
the combined error to 3.61%. This implies that utilizing the clustering
results from the GMM algorithm in BO helps identify optimal parameter
settings more effectively by leveraging inherent patterns and structures in
the data, leading to a more accurate and efficient optimization process.
Therefore, these errors can be further reduced by integrating advanced
parameter calibration algorithms, which would fine-tune the model pa-
rameters to better align simulated speeds with observed data.



Fig. 6. Error convergence curve (9:00 a.m.–10:00 a.m.).
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The parameter settings derived from driving style clustering and
subsequently refined using the BO algorithm are detailed in Table 8. To
further evaluate the effectiveness of this approach, we compare the
simulation results using the default parameters with those obtained from
the BOG method, alongside the real-world data (Table 9).

This comparative analysis aims to highlight the improvements in
simulation accuracy achieved through the advanced calibration process.
The default parameter settings often fail to account for the nuanced
variations in driving behavior, leading to discrepancies between the
simulated and actual traffic conditions. By contrast, the parameters
adjusted through BOG, informed by GMM clustering, are expected to
more accurately reflect the diverse driving styles and conditions observed
in the real-world data.

When default parameters are utilized in the simulation, the average
speed is approximately 1.25 times of the speed detected by real-world
sensors, with a comprehensive MAPE of 20.2% (Fig. 7). This significant
Fig. 7. Comparison of speed variation for dif
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error highlights the substantial deviations inherent in default parameter
settings, which fail to accurately represent actual traffic conditions and
driving behaviors. In contrast, by leveraging Gantry data and considering
parameter settings across three driving styles and six vehicle types, fol-
lowed by calibration through the BOG method, the MAPE between the
simulated and real values is reduced to 3.1%. This considerable reduction
in error demonstrates a substantial improvement in simulation accuracy.
Fig. 8 illustrates the scatter plot comparisons of speeds using default
parameters, parameters adjusted for driving styles based on the GMM
clustering algorithm, and parameters further refined with BO. The scatter
plot shows the proximity of the data points to the central line, indicating
the alignment between simulation results and actual data. The closer the
points are to the middle line, the smaller the discrepancy between
simulation and reality. Fig. 8 clearly shows that parameter adjustments
using the BOG method yield a significant improvement over the default
settings.
ferent methods during observation time.



Table 9
SpeedFactor parameters of vehicles with different driving styles after BOG (16:00
p.m.–17:00 p.m.).

Vehicle type Driving characteristics Speed factor

1 (Passenger and van)
Speed limit:120 km/h

Aggressive Normc (0.71425, 0.1, 0.2, 2)
Moderate Normc (0.65310, 0.1, 0.2, 2)
Conservative Normc (0.53812, 0.1, 0.2, 2)

2 (Coach and trailer)
Speed limit:100 km/h

Aggressive Normc (0.74650, 0.1, 0.2, 2)
Moderate Normc (0.64680, 0.1, 0.2, 2)
Conservative Normc (0.59800, 0.1, 0.2, 2)

Fig. 8. Comparison of calibrated simulation results with real

Table 8
SpeedFactor parameters of vehicles with different driving styles after BOG (9:00
a.m.–10:00 a.m.).

Vehicle type Driving characteristics Speed Factor

1 (Passenger and van)
Speed limit:120 km/h

Aggressive Normc (0.79451, 0.1, 0.2, 2)
Moderate Normc (0.72649, 0.1, 0.2, 2)
Conservative Normc (0.59859, 0.1, 0.2, 2)

2 (Coach and trailer)
Speed limit:100 km/h

Aggressive Normc (0.73044, 0.1, 0.2, 2)
Moderate Normc (0.63289, 0.1, 0.2, 2)
Conservative Normc (0.58514, 0.1, 0.2, 2)
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To further validate the algorithm's transferability and generalizability
across different traffic scenarios, we selected a dataset from 16:00 p.m. to
17:00 p.m. on September 6, 2023. The BOG method was employed to
recalibrate the SpeedFactor parameters for vehicles exhibiting diverse
driving styles, post-clustering. As illustrated in Fig. 9, the error accu-
mulation curve indicates that the algorithm persistently seeks the
optimal parameter combination through multiple iterations, achieving
stability after approximately 16 rounds and ultimately reducing the
overall error to 6.28%. Fig. 10 juxtaposes the real speeds recorded during
16:00 p.m.–17:00 p.m. with the simulated output speeds post-
calibration. The calculated mean absolute percentage error (MAPE) for
this interval is 5.1%. While this MAPE is slightly higher than the 3.1 %
observed in the 9:00 a.m.–10:00 a.m. experiment, it remains within an
acceptable range, demonstrating the algorithm's robustness and
adaptability.

Moreover, Table 10 provides a comparative analysis of the MAPE
between the actual vehicle speeds and the simulation outputs for each
detector across the three methods. The MAPE for the Default Setting
during 16:00 p.m.–17:00 p.m. exceeds 25%, indicating that the default
parameters are unsuitable for practical engineering application.
Conversely, the BO with GMM clustering (BOG Method) significantly
reduces the MAPE to a range between 2% and 8% for the same period.
values of GMM Method, BO Method, and BOG Method.



Fig. 9. Error convergence curve of Bayesian algorithm (16:00 p.m.–17:00 p.m.).

Fig. 10. Comparison of calibrated simulation results with real values (16:00
p.m.–17:00 p.m.).

Table 10
Comparison of simulation results in different scenarios.

Gantry ID 06Ningbo 07Ningbo 08Ningbo 09Ningbo 10Ningbo

Default setting
(16:00
p.m.–17:00
p.m.)

26.07% 31.52% 26.88% 38.80% 37.17%

BOG method
(16:00
p.m.–17:00
p.m.)

6.11% 6.24% 7.69% 2.58% 2.74%

BOG method
(9:00
a.m.–10:00
a.m.)

3.85% 1.07% 2.90% 4.64% 3.11%

Fig. 11. Comparison of SPSA and BOG with multiple experiments.
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Additionally, the BOG Method for the 9:00 a.m.–10:00 a.m. period,
which utilizes traffic data corresponding to the GMM cluster analysis,
achieves an MAPE between 1% and 5%, demonstrating good calibration
accuracy. Despite the difference in time periods, the experiment
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conducted from 16:00 p.m. to 17:00 p.m. exhibited only a 2% increase in
MAPE compared to the 9:00 a.m.–10:00 a.m. experiment. This minor
increase in error highlights the strong portability and robustness of the
proposed BOG automatic parameter calibration algorithm, which in-
corporates driving style considerations.

The simultaneous perturbation stochastic approximation (SPSA) al-
gorithm is widely used for parameter optimization due to its efficiency in
high-dimensional problems and its ability to handle noisy or uncertain
environments (Jung et al., 2022). In order to consider the randomness of
the simulation, a comparison experiment with the SPSA method was
performed. Fig. 11 compares the mean convergence curves and their
corresponding confidence intervals (CI) of the commonly used SPSA
method and the proposed BOG method over 10 repeated experiments,
showing the mean and 95% confidence intervals of the error indicator.
After 30 iterations, the BOG algorithm demonstrates rapid convergence,
stabilizing its error within the range of 4%–6%. In contrast, the SPSA
algorithm exhibits less robust performance, with wider error variability
ranging from 7% to 14%, indicating lower parameter reliability.

This disparity in performance can be attributed to BOG's ability to
effectively leverage the information obtained from GMM clustering,
which provides a more nuanced understanding of the underlying
parameter relationships. By incorporating the clustering results, BOG not
only optimizes the parameters more efficiently but also reduces the risk
of converging to suboptimal solutions. In contrast, SPSA, despite its ef-
ficiency in high-dimensional spaces, lacks this mechanism to refine its
search space, leading to higher variability in error and less reliable
parameter estimates.

This consistent performance across different temporal datasets un-
derscores the efficacy of the BO method, combined with GMM-based
driving style clustering, in enhancing the precision and applicability of
microscopic traffic simulations. The ability to maintain relatively low
error rates despite varying traffic conditions suggests that this approach
is well-suited for diverse operational contexts. The implications of these
findings are significant for the field of traffic simulation. The application
of the BO algorithm to parameter calibration highlights its potential to
replace more traditional, resource-intensive methods such as sensitivity
analysis and trial-and-error approaches. This methodological shift
promises to streamline the calibration process, saving time and compu-
tational resources while enhancing accuracy. Moreover, integrating
GMM clustering into the calibration process allows for a nuanced rep-
resentation of driver behaviors, crucial for realistic traffic simulations. By
considering various driving styles and their influence on traffic flow, this
approach creates a more detailed and precise simulation environment.
Furthermore, the BOG method proposed in this study provides a general
method for mining data and constructing high-precision simulation for
highways with extensive ETC equipment. Such advancements can
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significantly improve traffic management and inform better planning
decisions.

5. Conclusions

Advanced and intelligent parameter calibration algorithms are essen-
tial for enhancing the accuracy of microscopic simulation models, which
could benefits traffic planning, design, and management decisions. This
study highlights deficiencies inherent in default simulation parameter
settings, which often lead to simulated vehicle speeds that exceed
observed values at various detector positions. Such discrepancies can yield
overly optimistic simulation results, potentially influencing research out-
comes erroneously. Focusing specifically on highway microscopic traffic
simulation, we utilized the GMM clustering algorithm to analyze and
classify driver behaviors based on data from ETC, gantry, and 100-m
mileage sources. This clustering identified three distinct driving style-
s—aggressive, moderate, and conservative—across different vehicle types.
Subsequently, we developed a categorized vehicle simulation model that
incorporates these driving styles and vehicle categories. To refine simu-
lation parameters, we employed a BO algorithm to automatically deter-
mine optimal parameter values. Validation against empirical data from the
Shanghai–Hangzhou–Ningbo highway demonstrated that the proposed
method significantly reduced the MAPE from 20.2% (using default pa-
rameters) to 3.1%. Moreover, the method exhibited robust performance in
mobility tests, achieving a MAPE of 5.01%.

In conclusion, the parameter calibration method introduced in this
study significantly improves the accuracy and reliability of highway
microscopic traffic simulations. By incorporating driving styles, this
approach offers a more realistic reference for parameter settings, thereby
enhancing the precision of simulations. Comparative analysis un-
derscores that combining GMM clustering with BO notably enhances
simulation accuracy, effectively overcoming the shortcomings of default
parameter configurations. Future research can focus on extending this
methodology to diverse road types and traffic conditions to further
validate its efficacy and broaden its applicability.
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